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Thermal layers generated when one body slips over the surface of another are considered. Exactness of the 
solutions obtained by the methods of the boundary layer theory is analyzed. 

In designing machines, it is important to know the temperature fields emerging in friction units, especially with high 

velocities of slip. In a moving body the thermal energy is concentrated near the contact surface, inside a narrow layer 

expanding in time (fairly short time intervals are concerned). Inside a counterbody, in the case of a specified relative 

velocity, a thermal layer expanding from the front face of the moving body is generated after a short period of time, during 

which the process sets up (see Fig. 1). A considerable number of studies [1-5] deal with the determination of relevant 

temperature fields. The following mathematical model is used more often than others. The body, contacting the counterface, 

instantaneously passes from an initially immobile state to a state of motion at an assigned velocity. The surface heat flux 

density, assumed to be a constant value, is generally imposed on the contact surface, which is a heat source. In identifying 

the thickness of thermal layers a difficulty is encountered related to the fact that the variable boundary of the thermal layer is 

a conventional quantity, i.e., it is an isotherm on which the temperature value is ten or, for example, a hundred times smaller 

than the value registered on the boundary with an imposed heat flux or temperature. A certain arbitrariness in selecting the 

boundary is inherent in boundary layer problems altogether. Since the rate of heat propagation is considered infinite, on the 

origination of a point or plate source at the time t = 0 the temperature variation, strictly speaking, is other than zero for any 

finite values of the coordinate and nonzero values of t. However, the bulk of the thermal energy is in the zone whose width 

fi, as the dimensional analysis [6] reveals, is proportional to the quantity .,/-af with one or another coefficient 

6 =  k -t/~. 

Zel'dovich and Raizer [6] indicated the coefficient k = 2 for an instantaneous point source. For a linear heat flux, 

Fazekas [1] obtained k = 1.75 by a graphoanalytic method. II'yushin and Ogibalov [2] determined the layer width 6 by 

expanding the expression for temperature in an integral form in terms of the coordinate and restricting themselves to a linear 

approximation, and it appeared here that k = 2/ffrx. Chichinadze [1], when solving the problem by the Fourier method, also 

confined himself to initial terms of the expansion and derived k = 1.73. 

Drozdov [3] analyzed the dependence of the thermal layer depth on how it is agreed to draw its boundary. If the 

temperature at the depth 6 is taken to be 10% of that on the friction surface, then k = 1.94, and for the temperature falling 

to 1%, k = 3.2. 

Balakin [4] attempted to calculate the portion of the entire thermal energy concentrated in the layer of thickness & As 

a consequence of the error in calculations, the quantity at issue turned out to depend on two parameters, k and the Fourier 

number, whereas in reality it must be dependent only on k. 

The current study has addressed the problem of a thermal layer boundary in a different way. The temperature field 

in the thermal layer may be described approximately by a polynomial of some degree. The higher the polynomial degree and 

the more precise is the definition, the farther the layer boundary passes into a low-temperature region, i.e., the layer per se 

is thicker. It is of interest to clarify how the conventional thickness of the thermal layer depends on the degree of the 

polynomial, approximating the temperature variation inside it. 
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Fig. 1. Diagram of thermal layers originating in 
friction, in a body (the layer thickness is fib) and in 

the counterbody (tcb). 

When one body slips at a high Velocity over the surface of another, a surface melting may occur. We consider only 

two limiting cases: 1) the body slips over the surface of a low-melting material, and a liquid film spreads over the entire 

contact surface; and 2) there is no melting. In the first case, the temperature of the contact surface, approaching the melting 

point of the counterbody material, remains unchangeable, and in the second case, the friction surface is a source of the heat 

flux, whose density we will assume to be a constant value. 
A mathematical model corresponding to the first case is formulated as follows. We write the heat conduction equation 

OT O2T a - -  O, (1)  
Ot Oy 2 

the initial condition: 

for t = 0  T = 0 ,  
(2) 

and the boundary conditions: 

f o r  l >0 TIv=0 = To, Tlu=| = O. (3) 

The problem solution is known (see, for example, [7], where the same problem arises in computing a liquid velocity 

field near the wall, which suddenly began to move): 

T ~ i exp (--  ~') d~ = erfc rl, r I = y 
To = v ~  ;i 2 "1/~" 

(4) 

The function erfcr/, referred to as an additional probability integral, is tabulated (see [8]). 

Hence it is not difficult to see time variations in the heat flux from the contact surface to the body under the 

conditions of constant temperature at the boundary: 

qo = - - ~ ,  OT u=0= ~,To / ~.pc 
09 "l/'aa-t- = T o ] /  ~tt 

(5) 

The amount of thermal energy absorbed by the body in a band of width c3 per unit area of the surface is 

Q act = pc I" Tdy  = - -  To -l/~p-J 1 - -  -V-~ ierfc 
-I/~-- 2 -V h-/- 

A definition and tables of the functions ierfc x, i~erfc x, etc. may be found in [8, 9]. The multiplier in front of the brackets 

is the total amount of energy, which entered the body through unit area of the contact surface Q,o. Hence, a portion of the 
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entire thermal energy, contained inside the layer of thickness ~, is equal to 

Qac 6 = 1 -- ]/~ ierfc 6 
Q~ 2 V~ 

Let us introduce the quantity (~1 by definition 

(7) 

i T  (8) 61 = ~ dg 

and call it the displacement thickness for the thermal layer. It is assumed that the temperature is reckoned from the level of 
the surrounding medium. The quantity 61 is an analog of the displacement thickness in hydrodynamics [7] 

w,  = i ( v -  vi 
6 

which characterizes the distance over which streamlines of the external flow (U is the velocity of the external flow) shift from 
the body in consequence of the boundary layer generation. 

Substituting the expression for temperature (4) into Eq. (8) yields 

61 = 2 - V ~  ierfc 0 = ~ -1/~. (9) v ~  

The dependence of the temperature T on the coordinate y in the thermal layer can be approximated by a polynomial 
in y. By way of example, we consider the case with the second-degree polynomial 

T' = ao (t) -i- al (t) y @ as (l) y~. 

Using three boundary conditions 

0T' i = 0 ,  T' lu=o = To; T'ly=~ = 0; - ~ y  u=~ 

we define three coefficients ao, al, and %, and arrive at 

( ( r ' = r o  i - 2  y 1 y /2. (10) 
, 6 62 / , 6 / 

Taking into account equality (8), it is natural to require that any approximation of the dependence of the temperature 

on the coordinate in a layer of width 5T'(y) satisfy the relationship 

T' (11) 
61= .of--~o dY. 

Substituting Eq. (10) into Eq. (11) results in 

1 
51 = - 6. 

3 
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TABLE 1. Displacement Thickness for Thermal Layer (31 

with Constant Temperature or Heat Flux Density at the 

Boundary 

Condition at the Body Counterbody 
boundary 

T O = corlst 

qo = COt',St 

2 2 
v- 

TABLE 2. Approximation of Temperature Fields in Thermal Layers by Polynomials 

of the Form ToO --  y/(3)n 

Polynomia: 
degree n 

Thermal [ 
layer h.=., 6 

.1 

461 
56, 

T.=eonst 'q.-----const 

1, i3 0,89 
2,26 1,77 
3,38 2,66 
4,15 3,54. 
5,64 4.43 

rly_--,lr,. 

Ts=const ett=const 

0,425 0,406 
O, 111 0,126 
0,016 0,029 
0,0014 0,0051 
o ,00007 0,0006 

~-Oac~/Qac 

r,=eon~t ]" q,=eomt 

0,30 [ 0,33 
o,o58 o ,o84 
0,007 0,016 
0,001 0,~ 
0,0002 0,0003 

Let us find the error arising when we take T = 0 at y = 6 = 3(31. In accordance with Eq. (4), the actual value of the 

temperature in dimensionless form is 

3 
T]v=dTo = erfc ]/----~ = 0.016. 

Similarly, the portion of the thermal energy contained in a layer of thickness (5 for the case (3 = 3(31, under the 

condition of constant temperature at the contact boundary, equals 

QaedQae= 1- - - [ /~ ie r fc  3 -- 0~993. 

It is easily seen that, in the general case, the approximating polynomial of degree n having the form 

l n 
T'=To 1 - +  i (12) 

satisfies the boundary conditions 

T'ly=0 = To; T ' l y~  = 0; OT' y=8 " O~-IT' -- O, (13) 
= O; . . . . .  OY~- ~ 

and from relationship (11) follows 

0 = (/'/" "t- 1) ~1" (14) 

Up to this point we considered the problem under the condition of constant temperature at the contact surface, when 

a moving body is in contact with a liquid film. Now we examine the case of dry friction. Let the velocity of relative 

movement be invariable. From the outset of the movement, a heat flux into the body arises, whose density qo is assumed 

constant along the body length and in time. The mathematical problem is described by Eq. (1) with the initial condition (2) 
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and boundary conditions 

OT qo . __c]T [ = 0 .  (15) 

0!1 v=o--  ~, ' 011 ]y= 

By differentiating both sides of Eq. (1) with respect to y, we arrive at an equation for the flux density q(y, t). Here, 

the boundary conditions (15) for q turn out to be conditions of the first kind. The solution has the form 

q = _ _ ~ ,  OT - - q o e r f c -  Y (16) 
Oy 2 ] / J  " 

By subsequently integrating both sides of the last of equalities (16) with respect to y from y to infinity, we obtain an 

expression for temperature (see, for example, [3] or [10, 11]) 

) T - -  2q0 V~- ie r fc  ( Y (17) 

At the boundary y = 0 

2 / t (18) 
T ~  q~ l /  ~.PC 

The amount of thermal energy concentrated inside a band of width 6 per unit area of the surface is equal to 

Qac~ =qot(  I - 4i2erfc ~---~---) (19) 
2 V ~ -  , " 

The displacement thickness for the thermal layer with q0 = const differs somewhat from the corresponding thickness 

in the case T O = const: 

61 ---- 2 - I /~  i2erfc 0/ierfc 0 = 1/-E Vgi?. (2o) 
2 

Further on, we examine the temperature field in the counterbody region under the liquid layer (To = const) or, in the 

case of dry friction (q0 = const), under the contact surface. The process is assumed established and quasisteady. The 

temperature field in the two-dimensional case in a coordinate system moving together with the body at the velocity U is 

defined by the equation 

U OT ( o2r 02T ) 
- - ~ a  + . 

Ox \ Oy 2 --g~x~ / 

Let us confine ourselves to the cases when the Peclet number with a characteristic length in the direction of x is large 

Pe = Ul/a )) t. 

Here, the heat flux, associated with the heat conduction, in the x direction is much smaller than in the y direction. 

Neglecting a small term in the original equation, we obtain a simpler equation 

OT a 02T (21) 
Ox U dy 2 
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Boundary conditions for the liquid film have the form 

when x < 0  T = 0 ;  

when X ~ 0 Tlwo = To; TIv== = O. 

(22) 

It is not difficult to see that, mathematically, this problem is equivalent to a nonstationary problem on heat 
propagation in a body with a designated temperature at the boundary, i.e., to Eq. (1) with boundary conditions (2) and (3). 
Only the replacement t --, x and a --- a/U should be made. Therefore, we may immediately write the solution analogous to Eq. 

(4) 

T = e r f c (  Y L / ' ~ x l )  
To ,--2- ' (23) 

For the heat flux at the boundary y = 0 with a specified temperature we have 

qo = To V" kpcU 
~x 

(24) 

Here, within the counterbody under the moving body (more precisely, under the melt boundary), in a layer of 

thickness 6(x), energy is concentrated which, when referred to unit surface area, equals 

2 To 1 '/'/t l, ax f Qac~ = T,----~ --~- [ ' - Vaierfc i-~- |//--"~-U ] ] �9 (25) 

The displacement thickness for the thermal layer in the counterbody at T O = const is 

2 l/o  
6x = ~ U 

(26) 

In the dry friction case with qo = const, based on Eqs. (17)-(20), we correspondingly derive for the counterbody 

2% ,/ra--~--ieric{ b' l / '  '~-~--~., (27) T--  k V ~ 2 1  a x / O  , 

2 l / x  To = ~ qo ~ ; (28) 
;q,cv 

Qac6 = qo @-- [ 1 --  4i%rfc ( +  V#-~---) j ; (29) 

2 [/ - �9 (30) 

The expression for the temperature To at the contact surface (28) coincides with that obtained by Eger [5] in a 

different way. 
Clearly, in approximating the temperature-coordinate relation inside the thermal layer by a polynomial of the type 

To(1 -- y/5)n, the relative error both as to the temperature at the boundary y = 6 and as to the thermal energy portion, 

concentrated inside the layer, does not depend on whether the thermal layer in the body or in the counterbody is considered. 
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The magnitude of the error, however, is dependent to some extent on the conditions at the contact surface, for example, on 
whether the temperature or the heat flux density at the boundary remains unchanged. In the case with T o = const 

T[v=~/To=erfc n + l  , 
-V~ ' (31) 

For qo = const 

Qac~ = ] / ~  ierfc n -+- 1 
Qac -V'~ (32) 

Tlv=6/To = -I/~ ierfc n + 1 
-I/~- ' (33)  

1 - - ~ 4 i % r f c / n +  1 
Qac -V~ (34) 

Table 1 gives displacement thicknesses for thermal layers in the body or counterbody as applied to the considered 

cases. Table 2 summarizes numerical results, characterizing the approximation accuracy for various degrees of the 
approximating polynomial up to n = 4. The thermal layer width with a constant heat flux at the boundary appears to be 
smaller than in the case of a designated temperature, in the ratio of r/4. A linear approximation of the thermal layer 

temperature produces an error as to the concentrated energy equal to 6-8 %, and a quadratic approximation increases the layer 

thickness and reduces the error to 0.7-1.6%. 
Thus, it is established that the conventional width of the thermal layer correlates in a multiple way with the degree of 

the polynomial approximating the temperature-coordinate relationship, and accuracy of the relevant approximation is 

estimated. 

NOTATION 

t, time; x, y, coordinates; l, length of a slipping body (along x); 6, conventional thickness of the thermal layer; T, 

temperature reckoned from the level of the surrounding medium; q, heat flux density, W/m2; To, qo, temperature and heat 
flux density near the friction surface; U, velocity of the relative movement of bodies, m/sec; p, substance density, kg/m3; c, 

specific heat, J/(ma.K); X, thermal conductivity, W/(m.K); a = X/(pc), thermal diffusivity, m2/sec. 
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